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A cumulant-like expansion for the entropy of an N-spin system is presented. The successive terms in the
expansion relate to successively higher orders of statistical association among spins. It is proved that for
any Ising system of general dimensionality with ferromagnetic interactions of arbitrary range, the first
two terms in the entropy expansion provide a lower bound for the exact entropy. A corollary of the theorem
is that the lower-bound property is also valid for any two-sublattice Ising system with antiferromagnetic
interactions between sublattices. An example is given which illustrates the fact that the vanishing of the
two-spin cumulant (correlation) does not necessarily imply that the spins are statistically independent.
The sum of the first two terms in the expansion is compared numerically with the exact entropy of an
N-spin chain (and also a ring) with nearest-neighbor ferromagnetic or antiferromagnetic Ising interactions.
The comparison, which measures the validity of a Kirkwood-type truncation in this context, is favorable

only at sufficiently high temperatures.

INTRODUCTION

HE existence of a connection between entropy and
correlation in statistical mechanics is indicated
by an inequality of Gibbs.! In brief, the inequality
states that if the coordinates of a system are separated
into two disjoint subsets, then the entropy of the system
is less than or equal to the sum of the two “reduced”
entropies associated with the subsets. The inequality
becomes an equation if and only if the two disjoint
subsets are statistically independent with respect to the
ensemble characterizing the system. Since the statistical
independence of two variables, # and y, implies? that the
covariance, {xy)—{(x)(y), equals zero (although the
converse is not true in general), the Gibbs inequality
thus provides evidence for a connection between entropy
and correlation.

If one approaches these matters from the point of
view of information theory,? one finds that the Gibbs
inequality expresses the fact that the “conditional”
entropy, i.e., the entropy associated with a priori rele-
vant knowledge, is less than or equal to the entropy
corresponding to a lack of the @ priori knowledge.

Furthermore, it is well known that for a system of V
noninteracting spins (a paramagnetic gas) in a nonzero
magnetic field, the canonical ensemble entropy decreases
monotonically with decreasing temperature for fixed
field. This decrease in entropy is identified with an
increase in magnetic order (induced magnetization).
Of course, there is no correlation here, since the spins

* On leave of absence from Institute for Solid State Physics,
University of Tokyo, Tokyo, Japan.

1 For a discussion and quantum generalization of this inequality
see H. Falk and E. Adler, Phys. Rev. 168, 185 (1968), and H.
Falk, Am. J. Phys. (to be published).

2 See, e.g., H. W. Alexander, Elements of Mathematical Statistics
(Wiley-Interscience, New York, 1961), p. 166.

3See, e.g., A. I. Khinchin, Mathematical Foundations of In-
formzztio?)t Theory (Dover Publishing Co., New York, 1957),
Eq. (1.2).

are noninteracting and are statistically independent in
the canonical ensemble.

The connections between entropy, order, correlation,
a priori knowledge, and mathematical information
provide valuable insights into the behavior of physical
systems and contribute directly to the foundations* of
statistical mechanics. In particular, the equilibrium
statistical mechanics of systems of interacting objects
(spins, particles) and the related phenomena of mag-
netic,® superfluid, and superconducting order, critical
point behavior,® and descriptions of coherent radiation?
make fruitful use of the concepts of correlation, order,
and entropy. There is abundant motivation for attemp-
ting to examine carefully the interlacing of these
concepts.

It is the purpose of this paper to study specifically an
aspect of the relation between entropy and spin
correlation. To do this an exact cumulant-like expan-
sion8 for the entropy S is given in terms of the reduced
entropies for N-spin systems. Higher-order terms in the
expansion represent successively higher degrees of spin
correlation. We prove analytically that for an Ising
system of any dimensionality with ferromagnetic
interactions of arbitrary range, the first two terms in the
entropy expansion provide a lower bound for the exact
entropy. A corollary of the theorem is that the lower-
bound property is also valid for any two-sublattice Ising
system with antiferromagnetic interactions between

4D. ter Haar, Elements of Thermostatistics (Holt, Rinehart,
and Winston, New York, 1966), Sec. 6.4.

5 See, e.g., W. Marshall and R. D. Lowde, Rept. Progr. Phys.
31, 705 (1968).

6 See, e.g., M. E. Fisher, J. Math. Phys. 5, 944 (1964).

7 Se)e, e.g., L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231
(1965).

8 A detailed discussion of the analogous expansion for classcial
fluids is given by J. Yvon, Correlations and Entropy in Classical
Statistical Mechanics (Pergamon Press, Inc., New York, 1969),
Secs. 2.5 and 3.8; references to the earlier work of R. L. Strano-
vich and of R. E. Nettleton and M. S. Green are also given.
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sublattices. The exact entropy .S is compared with the
sum of the first two terms in the expansion. The sum
denotes the entropy contributions from one-spin proba-
bilities and from pair correlations, and corresponds to
what would be obtained from a Kirkwood®-type
truncation. In that sense the difference [S-(first two
terms)] is the entropy contribution from higher
correlations.

A conclusion from numerical results for the one-
dimensional N-spin Ising model is that the above
Kirkwood truncation (more conventionally, approxi-
mation) generally leads one to underestimate the en-
tropy, and the error is substantial for low temperatures
and large V. All of these results are for zero external
magnetic field.

1. REDUCED ENTROPY EXPANSIONS

Kubo!? has discussed the important role of cumulants
in statistical physics, and has stressed the fact that
cumulants appear as connected-diagram contributions
in the usual perturbation expansions. The hierarchy of

cumulants for spin variables s;, where s;=2s5:
i=1,...,N, may be written

(sa)e=(s3), (1.1)

(sisi)e=(si8:)—(53)(s3), (1.2)

(8i8i8k)e= (5:855k) — ($:)(8jS8) —(s5){S:5k)
— (su){(si83)+2(s:)(s;){s) ,
(si8i5a51)e={8:5;5151) — {5551 ){(S1) — (5:5;51){S k)
—(ssn1)(85) — (sk8550)(85) — (538;)(Sk52)
— (su51)(851) = (sas1)(sw87)+2(s35;){sk)(s2)
F2(sssu)(s5){(s1)+2(s351)(s5){s%)
+2(sise)(s)(s0)+2(sis1)(s:){s%)
+2(srs0)(s:){s7) —6{s:)s:)(s)(s2), (1.4)

where the subscripts 1, 7,k,/ are distinct integers in each
cumulant and take on values, 1,...,N. It is readily
proved!® that a cumulant is zero if its elements may be
divided into two or more sets which are statistically
independent; however, the vanishing of a cumulant, say
(xy)—(x)(y), does not!! in general imply that x and y
are statistically independent. Although cumulants
($i5i)e; {SiSiSk)e, €tc., do mot in general maintain a
definite sign, Griffiths!? has been able to prove that for
Ising systems with ferromagnetic interaction, (s;5;).>0
and (s;s;5).<0, for positive magnetic fields. Definitive
results'® about some important thermodynamic proper-

9See, e.g., T. 1. Hill, Statistical Mechanics (McGraw-Hill
Book Co., New York, 1956), p. 196.

1 R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).

1 See Ref. 2.

2 R. B. Griffiths [J. Math. Phys. 8, 478 (1967); 8, 484 (1967)]
proved the first inequality which follows, and R. B. Griffiths,
C. A. Hurst, and S. Sherman, J. Math. Phys. (to be published)
proved the second inequality.

8 For a referenced discussion of the applications of the first

inequality and an alternative proof see J. Ginibre, Phys. Rev.
Letters 23, 828 (1969).

(1.3)
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ties of the above systems in the critical region have
followed from the latter inequalities.

In what sense do the above spin cumulants, which
are often taken to be a measure of successively higher
orders of spin correlation, contribute to the entropy of
the system? Can the entropy be resolved into a sum of
contributions which correspond to the higher correla-
tions, and do the successive terms all contribute to a
decrease in disorder?

To study these questions consider the quantities

Si=—Inpu(si; N) Inpu(si; ), (1.5)
Si= —Inpii(si,55; V) Inpii(sisis V) (1.6
Siiv=—10piji(5:,85,55; N) Inpiu(si,s55 V), (1.7)

where pi,pij,. .., are the one-; two-, etc., spin reduced
probabilities to be defined in the next section. The
corresponding reduced entropies are defined as follows:

(Siy=—=X pi(si; N) Inpi(si; N, (1.8)
Sip=—3 pislsi,s5; N) Inpis(sasis N), - (1.9)

84,87

where the sums are over all realizations of the spin
variables, e.g., for spin 1, s; may realize the values #=1.
Consider the cumulant-like quantities

(Sde=— (Inps;; N)), (1.10)
(Sij)e= — (Inpis(s5,55; N) =Inpi(s;; N)ps(s5N)),  (1.11)
(Sijiye= —(Inpisi(s1,5,5%; V)
—Inpii(si,s5; N)pr(se; N)
—Inpa(si,su; N)pi(si; N)
—Inpjr(si,se; N)pi(ss; N)
+2 Inpi(ss; N)pi(si; N)pa(se; N)), (1.12)

which may be directly written in terms of the reduced
entropies:

(Se=(Sy,

(Si)e=(Si)— (S —(Sy,

<Stfk>c=(Sijk>“<sii>_<§ik>_<€jk> o
F(S)H(S)+H(Sk) . (1.15)

The symbol N has been suppressed, but it must be kept
in mind that the quantities depend on the number of
spins in the system.

To relate the cumulant-like quantities to the entropy
S, it is sufficient to note!* that one may define % func-
tions according to the scheme

pilsi; N)=eM, (1.16)
Dii(si,853 W) =ehithithai, (1.17)

Din(8i,8;,5%; N )= ghithithicthiithixthirthiie, - (1.18)

(1.13)
(1.14)

1 Reference 8, Sec. 2.5.



1 SPIN CORRELATION AND ENTROPY

Expressing 7%; and %; in terms of p; and p; leads, for
example, to

pii=(pips)(pis/ pips) (1.19)
and ultimately to
N
1801, osw; N) =TT p)C IT  (pin/pipr))
i=1 1<i<k<N
X( (lenplﬁmﬁn/lePlann))
1<i<m<n<N
X-ox( I -, (120

1<u<ls< - -<INKN

from which it follows immediately that (with kp=1)
the total entropy

N

S=2X G+ X (Sie

i=1 1<i<j<N
+ T (St

1<i<i<k<N

+ > (Suowder (121)
1<h<la<-. - <IVEN
Now an inequality of Gibbs!® implies that

(Si5)e<0 (1.22)

with equality if and only if ;= pip;. On the other hand,
the corresponding spin cumulant (s;s;). does not in
general maintain a definite sign and it vanishes if, but
not necessarily’® only if pi;=p:p;. The statistical
association between spins ¢ and j is therefore more
reliably monitored by (S;), than by {8i8j) Further-
more, the fact that the sum over (S;;). contributes
negatively to the entropy expansion, may be interpreted
as a reduction in disorder due to the presence of pair
correlations. This suggests that in the entropy expansion
the additional cumulant-like terms, which relate to
higher orders of statistical association, may also
contribute to a reduction of disorder.

In the next section, however, it is proved analytically
that the difference

a=STEEH T G0d (1)

1<i<i<N

is positive for a large class of Ising systems of arbitrary
dimensionality with either ferromagnetic of anti-
ferromagnetic interactions.

16 See Ref. 1.

16 For the models under consideration the if and only if actually
does obtain for zero magnetic field; however, in the Appendix we
give a simple example which shows that the vanishing of the
linear correlation may occur even though the spins are not statist-
ically independent.
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2. THEOREM AND COROLLARY
For spins of magnitude 3 we have:

Theorem: For an Ising system of any dimensionality
with ferromagnetic interactions of arbitrary range, in
zero field A, is non-negative.

Corollary: For any two-sublattice Ising system with
nearest-neighbor antiferromagnetic interaction, in zero
magnetic field A, is non-negative.

The theorem and corollary, show that the first two
terms in the entropy expansion provide a lower bound
for the entropy of the Ising systems described. The
lower bound is relevant only when it is positive, since
S$20. Of course, the first term in the entropy expansion
provides a general (but in this case, trivial) upper
bound for S.

To prove the above assertions, it is useful to employ
the following representation!” of the reduced spin
probabilities for spin 3.

Direeein(Siny e - +5Sin; V)
=@ A+ (sa)sit -+ {si)si,
+<snsi2>silsiz+’ . -|-<S“' . 'Stn>si1' : 'Siu) ) (21)
which is implicit in the sense that the quantities
(Sir)ye + +(Ssy - 55,y are defined in terms of the reduced
spin probabilities. Equations (1.10) and (1.11) can now
be written

(Side=—(InF(14(s:)s)), (2.2)
. 1(sa)si(s)si+(sisi)siss
e~ (1) L+ (5s)) ) @
which, for zero field, reduce to
(S:)e=1In2, (2.4)
where (Sise=—3g:i(x), (2.5)
gii(®)= (1+a:;(x)) In(1+-ai;(x))
+(1—a,;(x)) In(1 —a;(x)), (2.6)
aij(x)=(s:s;)< 1, 2.7
and
x=1/T. (2.8)
Now for a Hamiltonian
H=-Y Jisisj, Ji=0 (2.9)

<J

1 R. J. Glauber, J. Math. Phys. 4, 294 (1963).
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the partition function Z satisfies the relation

T  E(T)
=— / ’ dx'E(x")+N In2, (2.11)
where _ '
E@)=(H)=—% Jija:(x). (2.12)

<Jj

It follows immediately that the entropy is given by

S=Z J,]f dx’a,-,-(x’) +]\7 In2—x« Z ]ija;j(x) , (213)
i<j 0 i<j
so that from (1.23), (2.4), and (2.5) we find
A2=Z Jij/ dx'ai,-(x')
i<J 0
=22 Jijaii(x)+3 X gi(x). (2.14)
i<j i<j
Write
fx)=A,, (2.15)
so that one has
/ =y {% ln(— ’ )—x ij}h] . (2.16)
dx  i<i 1—a;i(x) dx
From the work of Griffiths!? it follows that
daii(x)  d{s:s;)
) _ Aoy > (2.17)
dx dx
and!® that
a:;(x)>tanh(8J ;). (2.18)
Consequently (we put kz=1), we obtain
1+a,—,~
’% In )Z x],-j. (219)
1 —aij

Thus, we have proved that df/dx is positive; and it is
found by inspection that f(0)=0; therefore, we have
established

Ay>0. (2.20)

The vanishing of A, is excluded for the system defined
by (2.9) provided that at least two interaction bonds
Ji;j are nonvanishing and that the temperature is finite.

The proof of the corollary is accomplished by simply
performing a unitary transformation which takes the
two-sublattice antiferromagnet into a ferromagnet. It is
only necessary to notice that eack term in A, is invariant
with respect to that transformation.

The proof for the case of the presence of the magnetic
field seems to be difficult, because in (2.2) and (2.3),

18 R. B. Griffiths, Commun. Math. Phys. 6, 121 (1967).
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cumulants of odd order appear, and consequently it is
rather hard to establish the positivity of the derivative
df/dx. The extension of the theorem to higher-spin!®
and other classical systems such as the classical Heisen-
berg model will be reported in a separate paper.

3. EXAMPLE: N-SPIN RING AND CHAIN

In this section, the linear Ising model is investigated
in order to evaluate the value of the quantity A, and to
discuss the validity of a Kirkwood-type approximation.®
That is, the higher-order contribution A, has been
calculated for the one-dimensional, N-spin Ising system
with either ferromagnetic or antiferromagnetic inter-
action, free ends or periodic boundary conditions, and
arbitrary V. It should be noted that if a Kirkwood-type
truncation were used, all factors except the first two
in (1.20) would be set equal to unity. This truncation
would, in effect, approximate A, by zero; thus, the
magnitude of A, provides a measure of the validity (or
lack of validity) of the Kirkwood-type approximation
in the context of the model being considered. The
numerical behavior of the difference for either ferro-
magnetic or antiferromagnetic interaction, for either
choice of boundary condition, and for certain values
of NV in therange 2, 3, ..., 53, is displayed as a function
of the temperature.

For the Ising 7ing of N spins (each of magnitude 1)
with nearest-neighbor interactions, the Hamiltonian,
including the Zeeman energy, is

N
H=§1H(S¢,S,'+1), (31)

where

H(siyip1) = =3I [siSipat-(Setsi)h], sva=si. (3.2)

The spin projection s#=3%s; with =1 being the possible
realizations of s;,¢=1, ..., N. The interaction energy J
is a positive number for ferromagnetic interaction and a
negative number for antiferromagnetic interaction,
and % denotes the dimensionless product of the g factor,
the Bohr magneton, the magnetic field, and 1/(27).

The one-spin, reduced probability functions p;(s:; N),
for i=1,...,N are defined by

pilsis N)=2--- 2 X - X [ePH]/Z

Si—1 Sitl SN

3.3)

and the two-spin, reduced probability functions
2:i(si,85; N), for 4,7=1,...,N;i5 j are defined by
Dii(si,855 V)
=Y Y T Y Y et Z,
81

84—1 Si+1 8j—1 87+1 SN

(3.4)

®R. B. Griffiths, J. Math. Phys. 10, 1555 (1969).



1 SPIN CORRELATION AND ENTROPY

where the partition function

Z=% --- 2 [eP¥] (3.5)

and (1/B is the product of the Boltzmann constant and
the absolute temperature).

From expression (2.1) of the reduced spin proba-
bilities and also directly with the transfer-matrix
approach of Ashkin and Lamb,?® one obtains easily

pi(ss; N)=[cos2d~+ (wz/w1)"N sin2d ]/

[1+(w2/'wl)N:], $ = '_1 (3.6)
=[sin?d+ (ws/w1)~ cos?d]/
(14 (@e/w))¥], s.=+4+1, (3.7)

and

bii(si,855 N)
=[cos'd+ f(|i—7|) sin%d cos?d+ (ws/w1)¥ sin'd]/
[14+@w/w)¥], si=s;=—1 (3.8)

=[sin*d+f(|i—j|) sin?d cos?d+(ws/wy)¥ cos'd]/

[1+(‘ZU2/‘101)N], Si=8j= +1 (39)
=[1—f(|i—7|)+ (ws/w1)¥] sin%d cos*d,
s;=—s;==41, (3.10)
where
cosd=—a/(14+a®'2, sind=1/(1+a?)'2, (3.11)
a=—[exp(2K)1{sinh(2K k)
+([sinh(2Kk) P+exp(—4K))2) ,  (3.12)
K=187, (3.13)
w,=[exp(K) J([cosh(2Kh) ]
+(—=1)*Y[sinh(2Kk) ]2 +exp(—4K)}12)  (3.14)
and
f(li—31) = (/i) V=94 (ws/w1) V=11

It is worthwhile to notice at this point that for strictly
positive absolute temperatures, the eigenvalues of the
transfer matrix satisfy the inequality |w./wi|<1; so
that the double limit (N—o followed by |i—j|—)
of f(|i—7]) is zero. In that limit

(56,855 N) — pi(ss; N)pi(si; N);

i.e., any two spins at infinite separation are statistically
independent for this infinite-spin Ising ring. In general
the statistical independence implies the absence of
infinite-range linear correlation. In fact, it is simple to
show from the above reduced probabilities that the

2 J. Ashkin and W. E. Lamb, Jr., Phys. Rev. 64, 159 (1943).

3055
covariance
. f(|3—=71]) cos?d sin%d
4[(5151> <sz><37>] = 1+(w2/wl)N
(cos?d —sin?d) (wq/w1)¥
(3.16)
[1+4(wo/w1)V]?

vanishes in the above defined limit.
Subsequent discussion will be simplified by con-
sidering £=0:

w;=coshK , (3.17)

wp=sinhK , (3.18)

w=w,/w1=tanhK , (3.19)

sind=cosd=1/VZ, (3.20)

pilsi; N)=%, si==%1, (3.21)
pis(se,sis N) =11+ f(|i—j|)+w¥1/

[14w?], si=s;==+1 (3.22)
={1—f(i—jD+w"Y

[14wV], si=—s;==41 (3.23)

Z=wN+4w,V. (3.24)

From Z, the entropy S is computed in the usual manner
(put the Boltzmann constant=1):

S=N In2+N In coshK
—N[(14w"?)/(14w")]K tanhK
+In(14w?).

The last term exhibits, at low temperatures, and for
even N, the contribution?! to the entropy from the
twofold degeneracy of the ground state. For small N,
the contribution to S/N is significant. It is also note-
worthy that for NV an odd integer, w¥ and w?¥? are
negative for the antiferromagnetic case and there is
significant difference?® between the antiferromagnetic
and the ferromagnetic entropy per spin for small N
and low temperature. The corollary proved in the
previous section does not always hold for the ring of
odd N, which cannot be divided into two sublattices.
The “misfit spin’?? appearing in the reduced proba-
bilities plays the role of an impurity?® in an antiferro-
magnetic host.

For the N-spin Ising chain with nearest-neighbor
interactions and free ends, the Hamiltonian is

(3.25)

N-1
H=3 H(si,5:11) ’ (3.26)
i=1
where N
H(Si,5i+1) = —*-%JS@‘S.,:,,L (327)

2 J. C. Bonner and M. E. Fisher, Proc. Phys. Soc. (London)
80, 508 (1962).

22 C. Domb, Advan. Phys. 9, 165 (1960), pp. 168-169.

% H. Falk, Phys. Rev. 151, 304 (1966).
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H €=0

2>

L " 1

0 2 4 3 8
2kg T /11

F16. 1. Ao/S for a 53-spin antiferromagnetic ring (e=0) and
chain (e=1). When the statistical association (g;) is of sufficiently
long range, the two boundary conditions become distinguishable.

The one- and two-spin reduced probability functions
Di, Di; are defined as for the N-spin ring; the only
change being that of replacing H by H. By completely
analogous methods one finds

Pilsi; N)=%,
Dii(si,855 N) =3[ 14w!®=dl],

—3[1—w!],

Si=:E1 , (328)
(3.29)

—s;=s5;=4 1 (3.30)

Si=Sj=:!:1

where the partition function Z is for this case, easily
found?! to be the solution of a first-order linear difference
equation; explicitly

7 =2%(coshK)N-1, (3.31)

The entropy (with the Boltzmann constant=1) is then

TABLE I. Ay/S for antiferromagnetic (J <0) rings (e=0).

2kBT/|J| 0.5 1 2 4 10
N
3 —0.52 1072 —5.2510"2 —2.17 102 —4.77 103 —4.08 10~
5 —4.11 102 —1.20 102 +45.84107% 41.29 103 +45.53 1075
7 +1.92 107 41,57 1071 43.3510"2 +2.72 1073 +7.21 1078

2 G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 353
(1953), Appendix 2.
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found to be
S=N1n24(N—1) In coshK — (N —1)K tanhK. (3.32)

Recall that the computation of the difference between
the entropy S and the first two terms in the expansion
of S was denoted by
(Sibel-

A2=S‘—E§1<Si>+ 2 (3.33)

1<i<j<N

For the Ising ring in zero magnetic field, .S is given by
(3.25) and for the Ising chain, S is given by (3.32).
Furthermore, the selection of =0 led to

pi(si; N) =3 (3.34)

which is consistent with the symmetry and independent
of boundary conditions and the sign of J. Equations
(1.8) and (3.34) imply that

<>§1> = ln2 .

for s;==1,¢=1,...,N

(3.35)

Now the definition (1.11) of (S,;). may be written
(Siie=—{nLpus(s385 N)/ 2D
and with (3.22), (3.23), and (3.30),
(Siidoe=—3g1:-01(K),

(3.36)

3.37)

[3
2kg T/1J1

Fic. 2. g, the measure of statistical association between pairs,
for a 53-spin antiferromagnetic chain (e=1; i.e., free ends). For
kT /|J| <, the statistical association is essentially a maximum
and the same for all pairs.
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where

gi(K) =[1+4p(K) ] In[1+p(K) ]

+[1—pu(K) ] In[1—p(K) ], (3.38)
pu(K) =[w'+ (1= w1 ]/[1+(1—ew"]
=(sis;)—(sa)s), |i—3l =1, (3.39)
e=0 (ring), 1 (chain), (3.40)
w=tanhK (3.41)
and
K=18J (3.42)

By combining (3.25), (3.32), (3.35), and (3.37) one
arrives at the joint result

A2 € €
— =<1 — ~—> In coshK—(l— —>K tanhK
N N N

1 N1
+—2 (V=Dgu(K)
2N =1

+{1—e[(1/N) In(1+w")
—(K tanhK)w"2(1—w?)/(14+w")]. (3.43)

The quantities Ao/ N, S/N, Ao/ S, N T 1<ici<n (Sij)er
and —2(S;;). (for |i—j| =1,2,3,N—1) have been com-
puted for N=3,...,53, for positive and negative values
of K, where 0.05<|K|<5.00, and for e=0,1. Selected
results are displayed in Figs. 1 and 2 and Table I. It can
be seen from the equations that A, is an even function
of K for e=1 (chain), arbitrary N and for ¢=0 (ring),
N even, yielding nice examples of the general properties
derived by a unitary transformation which takes the
two-sublattice antiferromagnet into a ferromagnet as
was discussed in the previous section.

It is clear that: (1) A, is negative for antiferromag-
netic rings with V odd and less than 6, but A, becomes
positive for larger rings; whereas, A, is positive for all
chains (with free ends) irrespective of whether they are
ferromagnetic or antiferromagnetic, which is consistent
with the theorem and corollary proved in the previous
section; (2) |Ay/S| is small for temperatures greater
than 5J/2kp but becomes large for large NV and for
temperatures less than J/8kz; (3) —2(Si;)., which is
a measure of the statistical association of spins ¢ and 7,
is essentially a maximum and uniform for all pairs in a
53-spin chain at temperatures less than J/16kg.

It is concluded that for the model studied, the sum
of the first two terms in the entropy expansion provides
a close approximation to the exactly computed entropy
only for sufficiently high temperatures. Furthermore,
for systems of 6 or more spins the additional terms in the
expansion make a net positive contribution for all tem-
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peratures irrespective of whether the interaction is
ferromagnetic or antiferromagnetic. In that sense the
inclusion of pair correlations from all pairs, and the
neglect of triplet,..., correlations leads to an under-
estimate of the entropy which in conventional language
would imply an overestimate of order in this system.
Thus, in this context, the Kirkwood truncation gener-
ally leads to an underestimate of the entropy, and the
error is substantial for low temperatures and large N.
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APPENDIX

Consider a pair of spins, each of magnitude 1, and
take the Hamiltonian for the system to be

H=—J(S¢S2)*—A[2—(Sr)*—(S»)*], (A1)

where
Sz=—1,0,+1, (A2)

It is readily verified that in the canonical ensemble the
two-spin probabilities satisfy

i=1,2.

=Z"texp(J), (A3)
p(1,0)=p(—=1,0)=p(0,1) =p(0, —1)
=Z"lexp(B4), (A4)
$(0,0)=Z""1exp(284), (AS)
and the one-spin probabilities satisfy
p()=p(=1)=Z""[2 exp(8])+exp(84)], (A6)
p(0)=Z""[2 exp(84)+exp(284) ], (AT)

and Z may be obtained from the normalization equation

p(D+p0)+p(-1)=1. (A8)

Consequently, p(S5S»#) is nol in general equal to
$(S1%)p(Se?) although the cumulant vanishes:

(S2S#) —(Sr)(S¥)=0. (A9)

The latter result follows easily from the symmetry.
This counterexample, serves to illustrate the fact

that the vanishing of the covariance does not, in general,

imply that the variables are statistically independent.



